Determination of Polycyclic Aromatic Hydrocarbons in Water Using Nanoporous Material Prepared from Waste Avian Egg Shell

Author:

Nuhu Abdulmumin A.1,Basheer Chanbasha12,Shaikh Amjad Ashfaque3,Al-Arfaj Abdul Rahman1

Affiliation:

1. Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 1509, Dhahran 31261, Saudi Arabia

2. Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

For the first time a biocompatible calcium carbonate vateritic polymorph was recrystallized from eggshell waste and its application for the extraction of polycyclic aromatic hydrocarbons in water samples was demonstrated. This nanoporous calcium carbonate was used as sorbent in dispersive micro-solid-phase extraction method. In this approach 50 mg of the calcium carbonate material having about 25 nm pores was placed in a 5 mL of water sample and ultrasonicated for 30 min. The cloudy sample was centrifuged at 13500 rpm for 2 min. The aqueous layer was then discarded and the CaCO3material was dabbed dry with a lint-free tissue. The analytes were then desorbed with 100 μL of dichloromethane by ultrasonication for 5 min. Finally, the extract was analyzed by gas chromatography flame ionization detector. Experimental parameters affecting the extraction recoveries were optimized. Using optimum extraction conditions, calibration curves were linear with correlation coefficients of 0.9853 to 0.9973 over the concentration range of 0.05 to 30 ng/mL. This method showed a detection limit as low as 0.004 ng/mL (at signal-to-noise ratio of 3). Performance of the dispersive micro-solid-phase extraction was compared with a previously optimized solid-phase extraction technique. The developed method displayed good extraction recoveries (85 ± 8–110 ± 4%) with high enhancement factors (388–1433-fold) and good repeatability (% RSD < 13) and involved the use of minimal solvents. Analysis of seawater from Dammam Port revealed the presence of the analytes at concentrations between0.15±0.01and13.43±1.54 ng/mL.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3