Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

Author:

Lange Falko12,Franz Benjamin1,Maletzki Claudia3,Linnebacher Michael3,Hühns Maja4,Jaster Robert1

Affiliation:

1. Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057 Rostock, Germany

2. Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany

3. Molecular Oncology and Immunotherapy, Department of General Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany

4. Institute of Pathology, Rostock University Medical Center, Strempelstraße 14, 18055 Rostock, Germany

Abstract

Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC) patients, to evaluate effects of the small molecule kinase inhibitors (SMI) vemurafenib, trametinib, perifosine, and regorafenib in anin vitrosetting. The mutantBRAF(V600E/V600K) inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 inBRAFmutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence ofKRAS, BRAF, PIK3CA, andTP53mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3