More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications

Author:

Yasin Ahad1,Amin Muhammad1ORCID,Qasim Muhammad2ORCID,Muse Abdisalam Hassan34,Soliman Adam Braima4ORCID

Affiliation:

1. Department of Statistics, University of Sargodha, Sargodha, Pakistan

2. Department of Economics, Finance and Statistics, Jönköping International Business School, Jönköping University, Sweden

3. Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya

4. Pan African University Institute of Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya

Abstract

The Gamma ridge regression estimator (GRRE) is commonly used to solve the problem of multicollinearity, when the response variable follows the gamma distribution. Estimation of the ridge parameter estimator is an important issue in the GRRE as well as for other models. Numerous ridge parameter estimators are proposed for the linear and other regression models. So, in this study, we generalized these estimators for the Gamma ridge regression model. A Monte Carlo simulation study and two real-life applications are carried out to evaluate the performance of the proposed ridge regression estimators and then compared with the maximum likelihood method and some existing ridge regression estimators. Based on the simulation study and real-life applications results, we suggest some better choices of the ridge regression estimators for practitioners by applying the Gamma regression model with correlated explanatory variables.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference29 articles.

1. Statistical confluence analysis by means of complete regression systems;R. Frisch;Universitetets Økonomiske Instituut,1934

2. Ridge Regression: Biased Estimation for Nonorthogonal Problems

3. Ridge Regression: Applications to Nonorthogonal Problems

4. Ridge Regression: Some Simulations

5. A Monte Carlo Evaluation of Some Ridge-Type Estimators

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3