The Immune Landscape of Hepatitis B Virus-Related Acute Liver Failure by Integration Analysis

Author:

Gong Jiao1ORCID,Chen Yaqiong1,Cao Jing2ORCID,Wang Yang1,Chen Jiahao1,Li Danyang2ORCID,Sha Liuping2,Li Xinhua2ORCID,Chong Yutian2ORCID,Hu Bo1ORCID

Affiliation:

1. Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

2. Department of Infectious Diseases, Key Laboratory of Liver Disease of Guangdong Province, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Abstract

Hepatitis B virus-related acute liver failure (HBV-ALF) is a common type of liver failure, associated with high short-term mortality and morbidity rates. However, the immune landscape of HBV-ALF and its correlation with cell death are currently unknown. Based on 3 Gene Expression Omnibus data sets, infiltrated immune cells were quantified by single-sample gene set enrichment analysis method. The expression levels of immune genes and the abundance of immune cells in liver failure were compared with those in normal liver. The enrichment scores of cell death gene sets from Kyoto Encyclopedia of Genes and Genomes (KEGG) were calculated by gene set variation analysis method, and a protein-protein interaction (PPI) network was constructed using Cytoscape. Besides 21 differentially expressed immune genes, we identified 11 types of differentially infiltrated immune cells in HBV-ALF compared with normal liver. Enriched pathways of these immune genes mainly consisted of chemokine receptors, chemokine binding, interleukin-10 signaling, and TNFs bind their physiological receptors by Reactome pathway analysis. In addition, the enrichment scores of apoptosis and necroptosis pathway instead of autophagy and ferroptosis were increased in liver failure compared with normal liver. PPI network and gene cluster analysis of immune genes and apoptosis and necroptosis genes suggested that hub genes were mainly related to immune response and apoptosis. In summary, our study offers a conceptual framework to understand the immune landscape of HBV-ALF, which might help to improve prognosis.

Funder

Guangdong Key Field R&D Plan

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3