Mechanical Degradation of Q345 Weathering Steel and Q345 Carbon Steel under Acid Corrosion

Author:

Yang Fan1ORCID,Yuan Miao M.2,Qiao Wen J.1,Li Na N.3,Du Bin1

Affiliation:

1. Civil and Architecture Engineering, Xi’an Technological University, Xi’an 710021, China

2. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

3. School of Civil and Traffic Engineering, Shanghai Urban Construction Vocational College, Shanghai 200438, China

Abstract

In this work, a mechanical degradation of weathering steel and carbon steel caused by strong acid corrosion has been studied in order to clarify the threat of industrial acid vehicle leakage to steel structure bridge. Twenty-seven specimens of Q345 weathering steel plates and Q345 carbon steel plates were immersed in a 36% hydrochloric acid solution at room temperature, with the corrosion time being 0 h, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 48 h, and 72 h, respectively. Subsequently, the obtained specimens were subjected to a uniaxial tensile test to determine the stress-strain curves. The surface morphology was studied by the noncontact surface topography instrument DSX500. By analyzing the degree of mechanical degradation, the constitutive models of test steels under strong acid corrosion were established. The analysis of results shows that the corrosion rate of carbon steel is higher than that of weathering steel. After 72 hours of corrosion, the mass loss rate of carbon steel and weathering steel was 4.77% and 4.30%, respectively. The maximum corrosion pit depth of carbon steel was 25.52 μm higher than that of weathering steel. The constitutive models were in good agreement with the test results, and the resistance to corrosion degradation and deformation of the weathering steel was higher compared to the carbon steel. The results can serve as a guideline for designing steel constructions of improved durability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3