Evolution Mechanism of Mesocrack and Macrocrack Propagation in Carbonaceous Mudstone under the Action of Dry-Wet Cycles

Author:

Li S. N.1ORCID,Huang Z. H.2,Liang Q.1,Liu J.1ORCID,Luo S. L.3ORCID,Zhou W. Q.1

Affiliation:

1. School of Architectural Engineering, Hunan Institute of Engineering, Xiangtan Hunan 411104, China

2. School of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan Hunan 411104, China

3. College of Civil Engineering, Changsha University, Changsha 410022, China

Abstract

The crack propagation evolution of carbonaceous mudstone under the action of dry-wet cycles is an important cause of the unstable failure of this type of slope. This paper attempts to reveal the evolution mechanism of mesocrack and macrocrack propagation in carbonaceous mudstone under the action of dry-wet cycles from chemical, physical, and mechanical perspectives. Firstly, the soaking solution of carbonaceous mudstone during the dry-wet cycles was extracted for an ion concentration test to analyze the chemical reactions of carbonaceous mudstone. Then, CT scans were performed on the carbonaceous mudstone samples to study the changing pattern of mesostructure of carbonaceous mudstone during the dry-wet cycles. In the end, the mechanical properties and failure characteristics of carbonaceous mudstone after dry-wet cycles were studied by triaxial compression tests. The results showed that chemical reactions such as calcite dissolution, potassium feldspar hydrolysis, and sodium feldspar hydrolysis occurred during the dry-wet cycle of carbonaceous mudstone. Affected by the dry-wet cycles, the mesostructure of the carbonaceous mudstone gradually changed from face-face contact and edge-face contact to edge-corner contact and corner-corner contact, and the interlayer flake structure was opened and was locally curled and fractured. With the increase in the number of dry-wet cycles, the failure characteristic of carbonaceous mudstone transformed from tensile failure to shear failure, the failure surface of carbonaceous mudstone was deflected from 90° to 60°, and the crack propagation path of carbonaceous mudstone became more complicated. The chemical reaction of carbonaceous mudstone minerals during the dry-wet cycle is an important reason for the initiation and development of pores. The dry-wet cycle aggregates the propagation of mesocracks and structural disorder, transforming the uniform stress state of the rock mesostructure to the concentrated stress state, which is the important reason for the macrocrack propagation evolution of carbonaceous mudstone.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3