Novel Application of Eupatilin for Effectively Attenuating Cisplatin-Induced Auditory Hair Cell Death via Mitochondrial Apoptosis Pathway

Author:

Lu Xiaochan1ORCID,Deng Tingting1,Dong Hongsong1,Han Jinghong1,Yu Yanping1,Xiang Deng1,Nie Guohui1ORCID,Hu Bing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, and Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China

Abstract

Eupatilin (5,7-dihydroxy-3 ,4 ,6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.

Funder

Sanming Project of Medicine in Shenzhen

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3