Vibration Measurement of a Metal Sheet Using Single-Camera Digital Image Correlation with Projection Components

Author:

Liang Z. H.1ORCID,Yue L.1ORCID

Affiliation:

1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Digital image correlation has emerged as a popular method for the dynamic performance measurement of metallic and polymer sheets, owing to the benefits of being a noncontact, full-field, and high-precision method. Two or more high-speed cameras are required for full-field vibration measurements with three-dimensional digital image correlation, which is generally costly. Perpendicular view to the specimen surface is conventional in two-dimensional digital image correlation, and the out-of-plane displacement is regarded as a part of systematic errors. In this study, a single view method was implemented with no complex optical settings. The full-field vibration displacement of the metal sheet was measured with projection components, and the first four orders of displacement modes were identified. Finite element analysis and traditional experimental modal analysis were then implemented to validate the effectiveness and accuracy of the proposed approach. The results show that the dynamic parameters, including the natural frequencies and mode shapes, were well consistent. Meanwhile, there is a significant difference in the length of mode shape vectors. The number of measurement points in the proposed method is 2016, which is far more than the number of measurement points in the traditional experimental modal analysis. This would be convenient and beneficial for damage identification towards thin-wall parts including turbine blade with the continuum hypothesis of mode shapes and a single-camera DIC system. It is worth noting that this is effective with conditions of small deformation vibration and no rigid-body rotation.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3