Affiliation:
1. Department of Production and Characterization of Novel Foods, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), C/Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain
Abstract
The Group Contribution Equation of State (GC-EoS) was extended to represent high-pressure phase equilibria behavior of mixtures containing mono-, di-, triglycerides, and carbon dioxide (CO2). For this purpose, the alcohol-ester and the alcohol-triglyceride binary group interaction parameters were regressed in this work, using experimental phase equilibria data from the literature.
The capability of the parameters obtained was assessed by applying the GC-EoS model to simulate the supercritical CO2 fractionation of a complex glyceride mixture, which was produced by the ethanolysis of sunflower oil.
Experimental data was obtained in a countercurrent packed extraction column at pressures ranging from 16 to 25 MPa and temperatures from 313 to 368 K. The GC-EoS model was applied in a completely predictive manner to simulate the phase equilibria behavior of the multistage separation process. The chemical analysis of the glyceride mixture allowed a significant simplification of its complex composition and thus, a simple and satisfactory simulation of the supercritical extraction process was achieved.
Funder
Comunidad Autónoma de Madrid
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献