QMU Analysis of Flexoelectric Timoshenko Beam by Evidence Theory

Author:

Zhang Feng1ORCID,Zhang Jiajia1,Wang Weiyue1,Du Ruijie1,Han Cheng1,Qiao Zijie1

Affiliation:

1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

In recent years, with the rapid development of nanotechnology, a new type of electromechanical coupling effect similar to the piezoelectric effect, the flexoelectric effect, has gradually come into the public’s view. The flexoelectric beam that is the main structural unit of the flexoelectric signal output has broad application prospects in the next generation of micro- and nanoelectromechanical systems. Therefore, the investigation of flexoelectric materials and structures has important scientific and engineering application significances for the design of flexoelectric devices. In this paper, a model of flexoelectric Timoshenko beam is established, the deflection, rotation angle, and dynamic electrical signal output of the forced vibration are taken as the system response, and the density ρ , shear correction factor κ , and frequency ratio λ are selected as the key performance parameters of the system. The combination of available data and engineers’ experience suggests that there are random and cognitive uncertainties in the parameters. Therefore, the probability distribution of the system performance response is expressed by the likelihood function and belief function through the quantification of margins and uncertainties (QMUs) analysis methodology under the framework of evidence theory, and the system reliability or performance evaluation is measured by the calculated confidence factors. These results provide a theoretical basis for accurate analysis of flexoelectric components and provide guidance for the design of flexoelectric components with excellent performance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3