Hybrid Position/Force Control for Dual-Machine Drilling and Riveting System

Author:

Liu Yi1ORCID,Fang Qiang1ORCID,Ke Yinglin1

Affiliation:

1. The State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University, Hangzhou 310000, China

Abstract

The deformation of riveting machine caused by riveting force during rivet formed makes the riveting tool out of positioning, which leads to gapping underneath the rivet manufactured head and insufficient rivet drive head. This paper proposes a hybrid position/force riveting control method for the dual-machine drilling and riveting system to eliminate the negative effects of machine deformation. The cooperative work of two-side machine tool is realized by a hybrid position/force control strategy, which compensates for the force-induced deformation error without an accurate stiffness model of the riveting system. The position of pressing foot relative to the machine which represents the deformation of skin-side machine is obtained for the compensation to the displacement of skin-side actuator. Simultaneously, the advanced force control is adopted for the stringer-side actuator. The dynamics model of the stringer-side actuator in consideration of the machine deformation is established and identified. The disturbance observer (DOB) and feedforward controller are introduced as the model-based control algorithm to achieve the high-performance force control. Also, contrast experiments are conducted to validate the effectiveness of the proposed riveting control method. The results show that the rivet manufactured head can be seated in the countersink during the forming process and the gapping under the head is eliminated. The driven head height tolerance of ±0.1mm is achieved by accurate force control.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3