Investigating the Effects of Hyperparameters in Quantum-Enhanced Deep Reinforcement Learning

Author:

Fikadu Tilaye Getahun1ORCID,Pandey Amit2

Affiliation:

1. College of Informatics, Software Engineering Department, Bule Hora University, Bule Hora, Ethiopia

2. College of Informatics, Computer Science Department, Bule Hora University, Bule Hora, Ethiopia

Abstract

Quantum machine learning uses quantum mechanical concepts of superposition of states to make the decision. In this work, we used these quantum advantages to enhance deep reinforcement learning (DRL). Our primary and foremost goal is to investigate and elucidate a way of representing and solving the frozen lake problems by using PennyLane which contains Xanadu’s back-end quantum processing unit. This paper specifically discusses how to enhance classical deep reinforcement learning algorithms with quantum computing technology, making quantum agents get a maximum reward after a fixed number of epochs and realizing the effect of a number of variational quantum layers on the trainability of enhanced framework. We have analyzed that, as the number of layers increases, the ability of the quantum agent to converge to the optimal state also increases. For this work, we have trained the framework agent with 2, 3, and 5 variational quantum layers. An agent with 2 layers converges to a total reward of 0.95 after the training episode of 526. The other agent with layers converges to a total reward of 0.95 after the training episode of 397 and the agent which uses 5 quantum variational layers converges to a total reward of 0.95 after the training episode of 72. From this, we can understand that the agent with a more variational layer exploits more and converges to the optimal state before the other agent. We also analyzed our work in terms of different learning rate hyperparameters. We recorded every single learning epoch to demonstrate the outcomes of enhanced DRL algorithms with selected 0.1, 0.2, 0.3, and 0.4 learning rates or alpha values. From this result, we can conclude that the greater the learning rate values in quantum deep reinforcement learning, the fewer timesteps it takes to move from the start point to the goal state.

Funder

Bule Hora University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Reinforcement Learning: Advancing AI Agents Through Quantum Computing;Space Law and Policy;2024

2. Checkers Game Therapy to Improve the Mental Ability Of Alzheimer’s Patient using AI Virtual Assistant;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

3. Deep learning enhanced noise spectroscopy of a spin qubit environment;Machine Learning: Science and Technology;2023-05-17

4. Quantum Optimized AlexNet for Histopathology Breast Image Diagnosis;Proceedings of the 9th International Conference on Advanced Intelligent Systems and Informatics 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3