Polydatin Attenuates 14.1 MeV Neutron-Induced Injuries via Regulating the Apoptosis and Antioxidative Pathways and Improving the Hematopoiesis of Mice

Author:

Guo Jiaming1ORCID,Liu Tingting1,Ma Long2,Hao Wei3,Yan Hongli2,Li Taosheng4,Yang Yanyong1ORCID,Cai Jianming1ORCID,Gao Fu1ORCID,Xu Zhao4ORCID,Liu Hu1ORCID

Affiliation:

1. Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China

2. Department of Reproductive Medicine Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China

3. Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai 200433, China

4. Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Abstract

With more powerful penetrability and ionizing capability, high energetic neutron radiation (HENR) often poses greater threats than photon radiation, especially on such occasions as nuclear bomb exposure, nuclear accidents, aerospace conduction, and neutron-based radiotherapy. Therefore, there emerges an urgent unmet demand in exploring highly efficient radioprotectants against HENR. In the present study, high-throughput 14.1 MeV neutrons were generated by the high-intensity D-T fusion neutron generator (HINEG) and succeeded in establishing the acute radiation syndrome (ARS) mouse model induced by HENR. A series of preclinical studies, including morphopathological assessment, flow cytometry, peripheral complete blood, and bone marrow karyocyte counting, were applied showing much more serious detriments of HENR than the photon radiation. In specific, it was indicated that surviving fraction of polydatin- (PD-) treated mice could appreciably increase to up to 100% when they were exposed to HENR. Moreover, polydatin contributed much in alleviating the HENR-induced mouse body weight loss, spleen and testis indexes decrease, and the microstructure alterations of both the spleen and the bone marrow. Furthermore, we found that the HENR-damaged hematopoiesis was greatly prevented by PD treatment in such aspects as bone marrow hemocytogenesis, splenocytes balancing, or even the peripheral blood cellularity. The additional IHC investigations revealed that PD could exert potent hematopoiesis-promoting effects against HENR via suppressing apoptosis and promoting the antioxidative enzymes such as HO-1.

Funder

Naval Medical University Medial Protection Project

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3