Automatic Image Captioning Based on ResNet50 and LSTM with Soft Attention

Author:

Chu Yan1ORCID,Yue Xiao2ORCID,Yu Lei1,Sergei Mikhailov1,Wang Zhengkui3

Affiliation:

1. Harbin Engineering University, Harbin 150001, China

2. Zhongnan University of Economics and Law, Wuhan 430073, China

3. Singapore Institute of Technology, 138683, Singapore

Abstract

Captioning the images with proper descriptions automatically has become an interesting and challenging problem. In this paper, we present one joint model AICRL, which is able to conduct the automatic image captioning based on ResNet50 and LSTM with soft attention. AICRL consists of one encoder and one decoder. The encoder adopts ResNet50 based on the convolutional neural network, which creates an extensive representation of the given image by embedding it into a fixed length vector. The decoder is designed with LSTM, a recurrent neural network and a soft attention mechanism, to selectively focus the attention over certain parts of an image to predict the next sentence. We have trained AICRL over a big dataset MS COCO 2014 to maximize the likelihood of the target description sentence given the training images and evaluated it in various metrics like BLEU, METEROR, and CIDEr. Our experimental results indicate that AICRL is effective in generating captions for the images.

Funder

Strategic Initiative Grant on Applied Data Science

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3