Origin of Boron and Brine Evolution in Saline Springs in the Nangqen Basin, Southern Tibetan Plateau

Author:

Han Ji-long123ORCID,Han Feng-qing13ORCID,Hussain Syed-Asim23,Liu Wen-yu2,Nian Xiu-qing2,Mao Qing-fei2

Affiliation:

1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China

Abstract

The Nangqen Basin is a typical shearing-extensional basin situated in the hinterland of the Tibetan Plateau. It contains abundant saline spring resources and abnormal trace element enrichments. The hydrochemical molar ratios (Na/Cl, B/Cl, and Br/Cl), H-O isotopes, and B isotopes of the saline spring were systematically measured to describe the evolution of brines and the origin of the boron. The sodium chloride coefficient of the water samples in this area is around 1.0 or slightly greater, which is characteristic of leached brines; the highest B/Cl value is 4.25 (greater than that of seawater). The Na/Cl, B/Cl, and Br/Cl values of the springs are clear indicators of a crustal origin. Theδ18O values of the spring waters range from −12.88to −16.05, and theδD values range from −100.91to −132.98. Meanwhile the B content and B isotopes in the saline springs are in the ranges of 1.00 to 575.56 ppm and +3.55to +29.59, respectively. It has been proven that the saline springs in the Nangqen Basin are a type of leached brine, suggesting that the saline springs have a terrestrial origin. Theδ11B-B characteristics of the springs are similar to those observed in the Tibetan geothermal area, indicating that these two places have the same B source. Moreover, they have a crustal origin (marine carbonate rocks and volcanic rocks) instead of a deep mantle source.

Funder

Science and Technology Project of Qinghai Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3