Handing Optimization Energy Consumption in Heterogeneous Wireless Sensor Networks

Author:

Pinheiro Placido Rogerio1,Sobreira Neto Álvaro Meneses1,Aguiar Alexei Barbosa1

Affiliation:

1. Graduate Program in Applied Informatics, University of Fortaleza (UNIFOR), Avenida Washington Soares 1321, 60811-905 Fortaleza, CE, Brazil

Abstract

This paper presents an integer linear programming model devoted to optimize the energy consumption efficiency in heterogeneous wireless sensor networks. This model is based upon a schedule of sensor allocation plans in multiple time intervals subject to coverage and connectivity constraints. By turning off specifics sets of redundant sensors in each time interval, it is possible to reduce the total energy consumption in the network and, at the same time, avoid partitioning the whole network by losing some strategic sensors too prematurely. Since the network is heterogeneous, sensors can sense different phenomena from different demand points, with different sample rates. By resorting to this model, it is possible to provide extra lifetime to heterogeneous wireless sensor networks, reducing their setup and maintenance costs. This is an important issue to be considered when deploying sensor devices in hostile and inaccessible environments.

Funder

National Council of Technological and Scientific Development

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integer Programming Applied to Wireless Sensor Networks Topology Optimization;Communications in Computer and Information Science;2022

2. A Novel Hybrid Methodology Applied Optimization Energy Consumption in Homogeneous Wireless Sensor Networks;Wireless Sensor Networks - Insights and Innovations;2017-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3