An Experimental Approach to Formulate Lignin-Based Surfactant for Enhanced Oil Recovery

Author:

Ganie Kenny12ORCID,Manan Muhammad A2,Ibrahim Arif1ORCID,Idris Ahmad Kamal1ORCID

Affiliation:

1. Department of Petroleum Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

2. Department of Petroleum Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Abstract

The higher cost of chemical surfactants has been one of the main reasons for their limited used in enhanced oil recovery (EOR) process. Hence, the reason for developing lignin-based surfactant is to lower the cost of chemicals as it does not tie to the price of crude oil as compared to petroleum-based surfactants. Besides, lignin is biodegradable and easily extracted from plant waste. The objectives of this study are to determine the formulations of the lignin-based surfactant for EOR applications and to determine the oil recovery performance of the formulated surfactants through surfactant flooding. The lignin-based surfactants were formulated by mixing the lignin with the amine (polyacrylamide or hexamethylenetetramine) and the surfactant sodium dodecylbenzenesulfonate in a 20,000 ppm NaCl brine. Interfacial tension (IFT) of the formulated lignin-based surfactant is measured at ambient temperature using the spinning drop method. The displacement experiments were conducted at room temperature in glass beads pack holders filled with glass beads, saturated with paraffin and brine. The results of the study showed that the best formulation of lignin-based surfactant is using hexamethylenetetramine as the amine, lignin, and sodium dodecylbenzenesulfonate at 2% total active concentration. The oil recovery and interfacial tension using the lignin amine system is comparable with the commercial petroleum sulfonate system.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3