Affiliation:
1. Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
2. Department of Gastroenterology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110033, China
Abstract
Objective. The current study aims to analyze the improvement mechanism of visceral hypersensitivity (VH) and targets of Shugan Jiangni Hewei granules (SJHG) for nonerosive reflux disease (NERD) treatment as well as to offer an experimental foundation for its clinical use. Methods. Healthy male Sprague–Dawley rats (
= 36) were acquired in the current study that was further split into three groups: blank, model, and drug (SJHG). Subsequently, differentially expressed proteins and bioinformatics analysis were performed on the collected tissue samples acquired from the anterior cingulate cortex of the model and SJHG rat groups using a tandem mass tag- (TMT-) based proteomics. Eventually, the obtained data from the bioinformatic analysis was further verified through western blotting. Results. From the bioinformatics analysis, only 64 proteins were differentially expressed between the NC and SJHG groups. These molecules were found to be highly expressed in immunological response and neural signal transmission. Finally, we confirmed three therapeutic targets of SJHG, namely, kininogen 1 (Kng1), junctional adhesion molecule A (JAM-A), and the PI3K/Akt signaling pathway. Conclusions. SJHG is effective in treating VH, Kng1 and JAM-A may be therapeutic targets of SJHG, and the therapeutic mechanism of SJHG may be realized by influencing immune response or transmission of neural signals.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine