Design and Analysis of a Hemispherical Parallel Mechanism for Forearm–Wrist Rehabilitation

Author:

Li Shuang1ORCID,Wang Zhanli1ORCID,Pang Zaixiang1ORCID,Gao Moyao1ORCID,Duan Zhifeng1ORCID

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

This paper presents a bionic cable-driven mechanism to simulate the motion of human wrist which is suitable for human forearm–wrist rehabilitation. It fulfills workspace of the human forearm–wrist and it can train the joint in active and passive. With three degrees of freedom, it completes the supination/pronation of the forearm, the radial/ulnar deviation, and flexion/extension of the wrist. In addition to the movement of single degree of freedom of the forearm–wrist, it can also complete circumduction of the wrist. The mechanism consists of revolving platform, parallel mechanism, supporting mechanism, and movable table. Especially, in the parallel mechanism, a spring is added between the fixed and moving platform, and the moving platform is designed in the shape of a hemispherical shell. Utilizing the resilient properties of the extension spring and the support of the hemispherical shell, the problem of slack in the cable is solved in this mechanism. Since the spring is a passive component and cannot be calculated directly, a method combining kinematics and statics is proposed to calculate the relationship between the pose of the moving platform and the cable. Meanwhile, the kinematics, statics, and workspace solution of the mechanism are derived. Then, the simulation results demonstrate the accurateness and feasibility of the inverse kinematics and workspace derivation of the mechanism. Finally, the experiments are analyzed to verify the mechanism suitable for forearm–wrist rehabilitation tasks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3