Flood Detection and Susceptibility Mapping Using Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models

Author:

Mohammadi Ayub1ORCID,Kamran Khalil Valizadeh1,Karimzadeh Sadra123ORCID,Shahabi Himan45ORCID,Al-Ansari Nadhir6ORCID

Affiliation:

1. Department of Remote Sensing and GIS, University of Tabriz, Tabriz 5166616471, Iran

2. Institute of Environment, University of Tabriz, Tabriz 5166616471, Iran

3. Department of Architecture and Building Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan

4. Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175, Iran

5. Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj 66177-15175, Iran

6. Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea 971 87, Sweden

Abstract

Flooding is one of the most damaging natural hazards globally. During the past three years, floods have claimed hundreds of lives and millions of dollars of damage in Iran. In this study, we detected flood locations and mapped areas susceptible to floods using time series satellite data analysis as well as a new model of bagging ensemble-based alternating decision trees, namely, bag-ADTree. We used Sentinel-1 data for flood detection and time series analysis. We employed twelve conditioning parameters of elevation, normalized difference’s vegetation index, slope, topographic wetness index, aspect, curvature, stream power index, lithology, drainage density, proximities to river, soil type, and rainfall for mapping areas susceptible to floods. ADTree and bag-ADTree models were used for flood susceptibility mapping. We used software of Sentinel application platform, Waikato Environment for Knowledge Analysis, ArcGIS, and Statistical Package for the Social Sciences for preprocessing, processing, and postprocessing of the data. We extracted 199 locations as flooded areas, which were tested using a global positioning system to ensure that flooded areas were detected correctly. Root mean square error, accuracy, and the area under the ROC curve were used to validate the models. Findings showed that root mean square error was 0.31 and 0.3 for ADTree and bag-ADTree techniques, respectively. More findings illustrated that accuracy was obtained as 86.61 for bag-ADTree model, while it was 85.44 for ADTree method. Based on AUC, success and prediction rates were 0.736 and 0.786 for bag-ADTree algorithm, in order, while these proportions were 0.714 and 0.784 for ADTree. This study can be a good source of information for crisis management in the study area.

Funder

University of Tabriz

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3