Very Short-Term Blackout Prediction for Grid-Tied PV Systems Operating in Low Reliability Weak Electric Grids of Developing Countries

Author:

Mbuya Benson H.12ORCID,Dimovski Aleksandar3,Merlo Marco3,Kivevele Thomas1ORCID

Affiliation:

1. School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania

2. Electrical Engineering Department, Arusha Technical College, P.O. Box 296, Arusha, Tanzania

3. Energy Department, Politecnico di Milano, Via la Masa, Milano 20156, Italy

Abstract

Sub-Saharan emerging countries experience electrical shortages resulting in power rationing, which ends up hampering economic activities. This paper proposes an approach for very short-term blackout forecast in grid-tied PV systems operating in low reliability weak electric grids of emerging countries. A pilot project was implemented in Arusha-Tanzania; it mainly comprised of a PV-inverter and a lead-acid battery bank connected to the local electricity utility company, Tanzania Electric Supply Company Limited (TANESCO). A very short-term power outage prediction model framework based on a hybrid random forest (RF) algorithm was developed using open-source Python machine learning libraries and using a dataset generated from the pilot project’s experimental microgrid. Input data sampled at a 15-minute interval included day of the month, weekday, hour, supply voltage, utility line frequency, and previous days’ blackout profiles. The model was composed of an adaptive similar day (ASD) module that predicts 15 minutes ahead from a sliding window lookup table spanning 2 weeks prior to the prediction target day, after which ASD prediction was fused with RF prediction, giving a final optimised RF-ASD blackout prediction model. Furthermore, the efficacy analysis of the short-term blackout prediction of the formulated RF, ASD, and RF-ASD regression and classification algorithms was compared. Considering the stochastic nature of blackouts, their performance was found to be fair in short-term blackout predictions of the test site’s weak grid using limited input data from the point of coupling of the user. The models developed were only able to predict blackouts if they occurred frequently and contiguously, but they performed poorly if they were sparse or dispersed.

Funder

Arusha Technical College

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3