Affiliation:
1. Key Laboratory of Shanghai for Power Engineering Multi-Phase and Heat Transfer, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Electrical and Automatic Engineering, Changshu Institute of Technology, Changshu 215500, China
Abstract
Particle sizing methods have gained considerable attention in the past few decades, but there is still a big challenge in high concentration situations (i.e., volume fraction>10%). However, the ultrasonic spectroscopy technique is a common tool for the noninvasive determination of essential parameters for high concentration systems by analyzing ultrasonic spectra with inversion algorithms, including the particle size distribution (PSD), volume fraction of each phase, and physicochemical properties. For the ultrasonic measurements, proper acquisition and analysis of ultrasonic spectra are becoming significant in order to understand the relationship between the unknown parameters and the ultrasonic spectra. In the work, an experimental setup was provided to synchronously acquire ultrasonic reflection and transmission signals. A series of experiments were performed on silicon-water solutions at volume fractions 8%, 10%, and 12% to obtain the ultrasonic attenuation spectra and ultrasonic phase velocity spectra based on different measurement methods, i.e., the pulse-echo method, reference reflection method, and through-transmission method, respectively. Based on the Epstein-Carhart-Allegra-Hawley (ECAH) forward model, genetic algorithm (GA) and optimum regularization technique (ORT) algorithms were implemented to determine PSD with the measured spectra; the obtained PSD was then compared with the optical microscope method. It revealed that the spectra obtained by different measurement methods showed individual features while the obtained PSD was consistent and the volume median diameters were within a deviation of 10% with GA and ORT algorithms. The differences and characteristics of these three measurement methods for signal acquisition and interpretation were discussed and presented to provide an evaluation and recommendation for ultrasonic particle sizing.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献