Gait Recognition Based on the Feature Extraction of Gabor Filter and Linear Discriminant Analysis and Improved Local Coupled Extreme Learning Machine

Author:

Guo Hongli1,Li Bin123ORCID,Zhang Youmei1,Zhang Yu1,Li Wei1,Qiao Fengjuan1,Rong Xuewen4,Zhou Shuwang23

Affiliation:

1. School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan 250041, China

3. Shandong Artificial Intelligence Institute, Jinan 250041, China

4. School of Control Science and Engineering, Shandong University, Jinan 250061, China

Abstract

A gait energy image contains much gait information, which is one of the most effective means to recognize gait characteristics. The accuracy of gait recognition is greatly affected by covariates, such as the viewing angle, occlusion of clothing, and walking speed. Gait features differ somewhat by angles. Therefore, how to improve the recognition accuracy of a cross-view gait is a challenging task. This study proposes a new gait recognition algorithm structure. A Gabor filter is used to extract gait features from gait energy images, since it can extract features of different directions and scales. We use linear discriminant analysis (LDA) to tackle the problem that the feature dimension restricts the process. Finally, the improved local coupled extreme learning machine based on particle swarm optimization is used for the classification process of the extracted features of the gait. The proposed method and other current mainstream algorithms are compared in terms of the recognition accuracy based on the CASIA-A and CASIA-B datasets, and the simulation results show that the proposed algorithm has good performance and performs well at cross-view gait recognition.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3