Industrial Internet of Things Based Efficient and Reliable Data Dissemination Solution for Vehicular Ad Hoc Networks

Author:

Latif Shahid12,Mahfooz Saeed1,Ahmad Naveed1,Jan Bilal3ORCID,Farman Haleem1ORCID,Khan Murad2,Han Kijun4ORCID

Affiliation:

1. Department of Computer Science, University of Peshawar, Khyber Pakhtunkhwa, Pakistan

2. Department of Computer Science, Sarhad University of Science and Information Technology, Peshawar, Pakistan

3. Department of Computer Science, Fata University, FR Kohat, Pakistan

4. School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea

Abstract

Industrial Internet of Things (IIoT) is the other name of industrial Internet. It integrates a variety of existing industrial automation technologies with computing, machine learning, and communication technologies. Vehicular ad hoc network, an application of IIoT, is a self-organized network of vehicles which tends to provide improved road safety, diminished traffic congestion, and ultimate comfort to the travellers. In VANETs, vehicles exchange data with each other directly or through roadside units (RSUs). Data dissemination in VANETs experiences numerous challenging issues including broadcast storm, network partitions, intermittent connectivity between vehicles, and limited bandwidth. In literature, various data dissemination schemes are proposed. However, most of these schemes are designed for either urban or highway VANET scenarios and evaluated under sparse or dense traffic conditions. Moreover, these schemes do not effectively overcome the aforementioned issues simultaneously. In this paper, we present a new data dissemination protocol for VANETs, which disseminates the emergency messages in different scenarios under varying traffic conditions. During dense traffic conditions, DDP4V employs the segmentation of transmission region of a vehicle in order to select the most appropriate next forwarding vehicle (NFV). Accordingly, it divides the transmission region of a vehicle in three distinct segments and selects vehicle(s) inside the highest priority segment to forward the message to all neighbour vehicles, whereas it also uses implicit acknowledgements for guaranteed message delivery during sparse traffic Conditions. Simulation results show that DDP4V protocol outperforms the other existing related protocols in terms of coverage, network overhead, collision, and end-to-end delay.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3