Assessment of Heavy Metal Concentrations with Fractionation Method in Sediments and Waters of the Badovci Lake (Kosovo)

Author:

Malsiu Avni1,Shehu Ilir1ORCID,Stafilov Trajče2ORCID,Faiku Fatmir1

Affiliation:

1. Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina, 10000 Prishtina, Kosovo

2. Institue of Chemistry, Faculty of Science, Ss. Cyril and Methodius University, P.O. Box 162, 1001 Skopje, North Macedonia

Abstract

The concentrations of thirteen metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) were analyzed in waters and sediments of the Badovci Lake. The total metal concentrations in the water followed the descending order: Fe > Al > Mn > Cu > Ba > Zn > As > Ni > Pb > V > Co > Cd > Cr, and the total metal content in the sediments also followed the descending order: Fe > Al > Mn > Ni > Cr > Pb > Ba > Zn > V > Cu > As > Co > Cd. According to EC 98/83, Al, Fe, and Mn at some sampling sites exceeded safety limits for drinking water, whereas other elements were at acceptable levels. The total content of Cr, Cu, Ni, Pb, and V in the sediments exceeded the target values of the New Dutch List. Using pollution indicators such as the contamination factor (CF) and geoaccumulation index (Igeo), most of the samples were unpolluted to moderately polluted by Cu, Cr, Pb, V, and Ni. The values of the pollution load index (PLI) were more than one (>1), indicating progressive deterioration of the sediment quality. The enrichment factor (EF) for all the studied metals suggests their enrichments in sediments of the Badovci Lake. Most of the elements were found in the residual fraction strongly bonded to the crystalline component. Pb, Mn, and Cu were bound in the organic and exchangeable components. The extent of pollution by heavy metals in sediments of the Badovci Lake implies that the environmental condition is relatively stable, and attention should be paid to metals bonded in the extractable and organic phases. It is recommended to periodically monitor water and sediment quality.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3