Research of Roof Anchorage Rock Beam Bearing Structure Model of Extra-Large Width Open-Off Cut and Its Engineering Application in a Coal Mine, China

Author:

Xie Shengrong12ORCID,Zhang Qing3,Chen Dongdong1ORCID,Wang En1,Zeng Junchao1,Ji Chunwei1,Wu Xiaoyu1,Jiang Zaisheng1,Chen Feng4,Qiao Shunxing4

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining & Technology, Beijing 100083, China

2. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining & Technology, Beijing 100083, China

3. School of Emergency Management and Safety Engineering, China University of Mining & Technology, Beijing 100083, China

4. Xingdong Coal Mine, Jizhong Energy Resources Co., Ltd., Xingtai 054000, China

Abstract

The stability of the extra-large width open-off cut of a longwall panel has been a major concern in underground solid backfill mining. In this study, a numerical model was built with FLAC3D for analyzing the characteristics of the effective prestressed field distribution in the extra-large width open-off cut roof in Xingdong coal mine, China. The numerical results obtained in this study demonstrate that an anchorage rock beam bearing structure (ARBBS) can be formed. Additionally, the ARBBS model was also constructed. The analytical expression of the maximum shear stress (MSS) in the model was obtained under the functions of composite influencing factors. Then, the MSS evolution laws in ARBBS with different thicknesses and spans were investigated using MATLAB software. The stress changes in ARBBS with a span of 15 m were compared and analyzed under the functions of single and composite influencing factors. The cooperative control principle of the roof ARBBS and two rib anchorage bearing structures was also clarified. Accordingly, a combined support scheme for an 11.5 m-wide open-off cut was proposed. The field applications demonstrated that the scheme successfully controlled the failure and deformation of the surrounding rock, thus contributing to the fast development of the open-off cut and the quick and timely installations of the backfill mining equipment. This validated the results of the ARBBS model. This study is expected to provide helpful references for other extra-large width open-off cut or roadway stability investigations and rock support design under similar engineering and geological conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3