Biobjective UAV/UGV Collaborative Rendezvous Planning in Persistent Intelligent Task-Based Wireless Communication

Author:

Wang Qin1ORCID,Chen Hua1ORCID,Tian Junwei1ORCID,Wang Jia1ORCID,Su Yu1ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Xi’an Technological University, Xi’an, China

Abstract

This paper addresses a multiobjective Unmanned Aerial Vehicle (UAV) and Unmanned Ground Vehicle (UGVs) collaboration scheduling problem in which UAVs must be recharged periodically during a persistent task, such as wireless communication and making aerial panoramic VR video by UAV. The proposal is to introduce a UGV/UAV cooperative system in which UAVs should be recharged by UGVs periodically, and also, the UGVs have to visit their task points expect for the recharge points. The objective of the problem is to schedule and plan paths with the tradeoff of path length and makespan for UAVs and UGVs. The mathematical model which can be considered a combinatorial multiobjective optimization problem is presented firstly, and the solution of the problem is composed of presubsolution and postsubsolution. The multiobjective adaptive large neighborhood is hybrid with the Pareto local search (MOALP) to resolve the problem. The experimental result shows that the proposed algorithm outperforms the compared algorithms on the rendezvous planning problem for UAVs and UGVs working collaboratively in intelligent tasks.

Funder

Key Research and Development Projects in Shaanxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference23 articles.

1. Route planning algorithms for unmanned aerial vehicles with refueling constraints;K. Sunder

2. Algorithms for routing of unmanned aerial vehicles with mobile recharging stations;K. Yu

3. On cooperation between a fuel constrained UAV and a refueling UGV for large scale mapping applications;P. Maini

4. Optimal scheduling for refueling multiple autonomous aerial vehicles

5. Scheduling and sequence reshuffle for autonomous aerial refueling of multiple UAVs;Z. Jin

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3