Optimization ELM Based on Rough Set for Predicting the Label of Military Simulation Data

Author:

Ding Xiao-jian1ORCID,Lei Ming1

Affiliation:

1. Science and Technology on Information Systems Engineering Laboratory, Nanjing 210007, China

Abstract

By combining rough set theory with optimization extreme learning machine (OELM), a new hybrid machine learning technique is introduced for military simulation data classification in this study. First, multivariate discretization method is implemented to convert continuous military simulation data into discrete data. Then, rough set theory is employed to generate the simple rules and to remove irrelevant and redundant variables. Finally, OELM is compared with classical extreme learning machine (ELM) and support vector machine (SVM) to evaluate the performance of both original and reduced military simulation datasets. Experimental results demonstrate that, with the help of RS strategy, OELM can significantly improve the testing rate of military simulation data. Additionally, OELM is less sensitive to model parameters and can be modeled easily.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3