Experimental and CFD Investigation of a Modified Uneven-Span Greenhouse Solar Dryer in No-Load Conditions under Natural Convection Mode

Author:

Mellalou Abderrahman1ORCID,Riad Walid1,Hnawi Salma Kaotar1,Tchenka Abdelaziz1,Bacaoui Abdelaziz2,Outzourhit Abdelkader1

Affiliation:

1. Laboratory of Materials for Energy and Environment (LaMEE), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco

2. Laboratory of Applied Chemistry (LCA), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco

Abstract

An uneven-span modified greenhouse dryer was constructed and tested in no-load conditions under natural convection mode under the weather conditions of Marrakech, Morocco, for two distinct days. Moreover, a CFD evaluation of the uneven-span greenhouse dryer was performed as tool to visualize the air temperature distribution inside the dryer. For validating the CFD model, the temperature variations along the hours of the day were compared to the experimental results. A good agreement is obtained between the computed and measured inside air temperature with a difference not exceeding 8.46°C, with a correlation coefficient ( r ) and root mean square percentage deviations ( e ) 0.94 and 8.17, respectively. Furthermore, the maximum inside air temperature was measured to be 56°C and 52°C while the minimum inside relative humidity was measured to be 17% and 12%, for day-1 and day-2, respectively. The benefice of using asphalt as a floor covering material was revealed as an efficient way to heat the inside air at low solar radiations. The performances of the dryer were evaluated by the percentage of net heat gain variation as a way to validate the effectiveness of the dryer. This latter is found to be equal to 46% and 48% for the two days, respectively.

Funder

IRESEN

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3