A Novel Big Data Collection System for Ship Energy Efficiency Monitoring and Analysis Based on BeiDou System

Author:

Zeng Xiangming1ORCID,Chen Mingzhi1ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Haigang Avenue 1550, Shanghai 201306, China

Abstract

The call for green shipping is increasing, and the reduction of greenhouse gas emissions from ships becomes more and more important. Traditional ship energy efficiency monitoring is based on the noon reports, which are susceptible to human error and have a time delay. Many ship energy efficiency monitoring systems have been designed and developed, but they usually cannot send data to the shore in time. In order to identify abnormal fuel consumption in time, this paper realizes a big data collection system for ship energy efficiency monitoring based on the BeiDou System. The system installed on two sister container ships has already collected a lot of data. Big data analysis methods, such as principal component analysis (PCA) and correlation analysis, are applied in the system to realize data visualization and analysis. Using PCA, it turns out that the shaft power of the main engine is related to a certain ship speed, which is also affected by load and weather conditions, and is the biggest factor in determining fuel consumption. To realize the assessment of hull fouling and the optimization of ship trim, a useful physics-based analysis is proposed. The analysis shows that the fouling of ship body greatly increases its resistance. Our analysis method can also find the best trim under specific loading condition. All these points are important for reducing fuel consumption and improving ship efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BDS Availability Calculation and Visual Display Based on Monitoring Data;2023 8th International Conference on Image, Vision and Computing (ICIVC);2023-07-27

2. Marine vessel energy efficiency performance prediction based on daily reported noon reports;Ships and Offshore Structures;2023-05-18

3. A Pilot Study of Stacked Autoencoders for Ship Mode Classification;Applied Sciences;2023-04-28

4. Wave Height Prediction Suitable for Maritime Transportation Based on Green Ocean of Things;IEEE Transactions on Artificial Intelligence;2023-04

5. A Data-Driven Intelligent Energy Efficiency Management System for Ships;IEEE Intelligent Transportation Systems Magazine;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3