College English Flipped Classroom Teaching Model Based on Big Data and Deep Neural Networks

Author:

Chang Heli1ORCID

Affiliation:

1. Department of Foreign Languages, Liaocheng University Dongchang College, Liaocheng 252000, Shandong, China

Abstract

With the rapid development of information technology, flipped classroom as a new type of mixed teaching mode relying on computer technology has changed the traditional teaching mode and formed a teaching process of “learning first and teaching later,” and it has been used in many fields of teaching. Flipped classroom reverses the sequence of traditional teaching knowledge transfer and knowledge internalization and improves students’ autonomy. However, it is still in the exploratory stage of the specific impact of the flipped classroom teaching model on college students’ English autonomous learning ability. Therefore, this article proposes a novel college English flipped classroom teaching model based on big data and deep neural networks. The study has selected a total of 230 students in two classes of the second-year English major of a university as the research objects. Data are utilized to investigate the changes of the two groups of students’ English autonomous learning ability and English academic performance, to explore the specific changes of college students’ English autonomous learning ability and its influencing factors through interviews, and to predict and effectively analyze the weight of influencing factors through the deep neural network. This research enriches the theoretical research results of college students’ English autonomous learning ability under the flipped classroom teaching model, provides reference for the cultivation of college students’ English autonomous learning ability, and has certain reference significance for the optimization of the flipped classroom teaching model. The proposed research will support researchers and practitioners at college and university level.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3