Influences of S100A8 and S100A9 on Proliferation of Nasopharyngeal Carcinoma Cells through PI3K/Akt Signaling Pathway

Author:

Wen Liting1,Ding Yu1,Chen Xiaodong1,Tian Keyong1,Li Danfeng1,Liang Kun1,Yue Bo1ORCID

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, China

Abstract

Objective. To investigate the effects of S100A8 and S100A9 on proliferation in nasopharyngeal carcinoma cells and the regulatory effects of PI3K/Akt signaling pathway. Methods. Nasopharyngeal carcinoma cells (CNE1) were cultured and randomly divided into three groups: control group, S100A8/S100A9 overexpression group, and siRNA S100A8/S100A9 group. CCK-8 method was used to detect the effect of S100A8 and S100A9 on the viability of nasopharyngeal carcinoma cells. The effects of S100A8 and S100A9 on the colony forming ability of nasopharyngeal carcinoma cells were detected by colony forming assay. The effects of S100A8 and S100A9 on the proliferation of nasopharyngeal carcinoma cells were detected by EdU staining. The mRNA levels of PI3K and Akt were detected by RT-PCR. The expression levels of PI3K and Akt in NPC cells were detected by Western blot. Wortmannin, an inhibitor of PI3K/Akt pathway, was used to inhibit the activation of PI3K/Akt pathway. Results. Compared with the control group, the cell viability, the number of plate clones, the positive rate of EdU staining, and the mRNA and protein levels of PI3K and Akt were increased in the overexpression group. Compared with the control group, the cell viability, the number of plate clones, the positive rate of EdU staining, and the mRNA and protein levels of PI3K and Akt were decreased in the siRNA group. After inhibiting the activation of PI3K/Akt pathway, the viability of NPC cells in the overexpression group decreased significantly at 48 h and 72 h, while that in the siRNA group increased significantly. Conclusion. SiRNA S100A8 and S100A9 could inhibit the proliferation of nasopharyngeal carcinoma cells, and the underlying mechanism may be related to the inhibition of PI3K/Akt signaling pathway.

Funder

National Science Foundation Youth Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3