Study on Dynamic Evolution of Roof Crack and Support Timing of Secondary Tunneling for Large Section Open-Off Cut in Deep Mines

Author:

Liu Shuaigang12ORCID,Bai Jianbiao23ORCID,Wang Xiangyu12ORCID,Wu Bowen12ORCID,Wang Guanghui12ORCID,Li Yanhui12ORCID,Xu Jun4

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China

3. College of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi 830023, China

4. School of Science, Yangzhou Polytechnic Institute, Yangzhou 225127, China

Abstract

The stability of large section open-off cut in deep mines (LODM) is the key factor affecting the normal equipment installation and safe mining in fully mechanized top-coal caving face. The mechanical model shows that the deflection of the roof of the LODM is proportional to the cubic of span. In this paper, UDEC Trigon model is established, and the parameters of different coal measures strata are modified in detail. The evolution law, failure mode, and damage degree of roof cracks in secondary tunneling are studied, and the roof support effect is analyzed. The numerical simulation results show that the process of roof crack evolution after the primary excavation section and the second excavation section can be divided into three stages according to microseismic activities, and the reasonable supporting time can control the propagation of roof microcracks and reduce the development height of macrocracks. The rock bridge existing in the roof rock stratum after the combined support of long and short anchor cables can effectively limit the formation of macrocracks and their interaction; especially the key support in the interface area can reduce the development height of roof cracks in secondary tunneling and weaken the damage degree of roof rock stratum in the LODM. The field test shows that the moved volume of rib-to-rib and roof-to-floor of the LODM is stable at about 350 mm and 550 mm, respectively. The numerical simulation in this paper is helpful to understand the failure mode of roof in LODM with large mining height and provides a method for the design of its control technologies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3