Affiliation:
1. Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
2. Xi’an Medical University, Xi’an, China
Abstract
The aim of this study is to investigate the targeting efficiency of FITC-SS31 to mitochondria in both normal and H2O2-induced oxidative damaged 661W cells, characterizing the properties of FITC-SS31 in the biological assays. The purity and molecular weight of FITC-SS31 were identified using HPLC and MS. MTT and LDH assays were used to evaluate the cytotoxicity and cell permeability. The binding ability of FITC-SS31 to cells was demonstrated by flow cytometry. The colocalization of FITC-SS31 and MitoTracker both in normal and oxidative cells was analyzed by a laser confocal microscope. We detected the DEGs between SS31+H2O2 and H2O2-alone-treated cells by RNA seq. GO and KEGG analyses were performed to predict the functional gene of SS31. The molecular weight of FITC-SS31 was 1142.2 with the 97.76% purity. The flow cytometry results showed that the MFI (mean fluorescence intensity) of FITC-SS31 in normal cells in the 4 h probe treatment group was higher than that in the 2 h and the 0 h group. The MFI in the 2 h probe treatment group was much higher than that in the 4 h and 0 h groups in damaged cells. The positive rate of 10 μM FITC-SS31 was higher than that of 1 μM and 5 μM. Fluorescein imaging analysis confirmed that FITC-SS31 was overlapped with MitoTracker. Through the analysis, DEGs were highly expressed in “localization, organelle, antioxidant activity, binding” functions and enriched in “AMPK signaling pathway, MAPK targets/nuclear events mediated by MAP kinase pathway and PI3K-Akt signaling pathway.” It is speculated that SS31 exerts an antioxidant effect through one of these pathways. We hypothesized that SS31 could play a more efficient role in the pathological cells in the half-life period to avoid cell death due to oxidative damage. The functions of the DEGs in SS31+H2O2 and H2O2-alone samples are related to the localization and antioxidant activity of SS31. DEGs are mostly enriched in the AMPK signaling pathway, which needs further studies.
Funder
Xi’an Science and Technology Bureau Project
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献