Deployment of Clustered-Based Small Cells in Interference-Limited Dense Scenarios: Analysis, Design, and Trade-Offs

Author:

Urquiza Villalonga David Alejandro1ORCID,Riera-Palou Felip2ORCID,Fernández-Getino García M. Julia1ORCID,Femenias Guillem2ORCID

Affiliation:

1. Department of Signal Theory and Communications, Carlos III University of Madrid, 28911, Leganés, Madrid, Spain

2. Mobile Communications Group, Department of Mathematic and Informatics, University of the Balearic Islands, 07122 Majorca, Spain

Abstract

Network densification is one of the most promising solutions to address the high data rate demands in 5G and beyond (B5G) wireless networks while ensuring an overall adequate quality of service. In this scenario, most users experience significant interference levels from neighbouring mobile stations (MSs) and access points (APs) making the use of advanced interference management techniques mandatory. Clustered interference alignment (IA) has been widely proposed to manage the interference in densely deployed scenarios with a large number of users. Nonetheless, the setups considered in previous works are still far from the densification levels envisaged for 5G/B5G networks that are considered in this paper. Moreover, prior designs of clustered-IA systems relied on oversimplified channel models and/or enforced single-stream transmission. In this paper, we explore an ultradense deployment of small cells (SCs) to provide coverage in 5G/B5G wireless networks. A novel cluster design based on a size-restricted k -means algorithm to divide the SCs into different clusters is proposed taking into account path loss and shadowing effects, thus providing a more realistic solution than those available in the current literature. Unlike previous works, this clustering method can also cater for spatial multiplexing scenarios. Also, several design parameters such as the number of transmit antennas, multiplexed data streams, and deployed APs are analyzed in order to identify trade-offs between performance and complexity. The relationship between density of network elements per area unit and performance is investigated, thus allowing to illustrate that there is an optimal coverage area value over which the network resources should be distributed. Moreover, it is shown that the spectral-efficiency degradation due to the intercluster interference in ultradense networks (UDNs) points to the need of designing an interference management algorithm that accounts for both intracluster and intercluster interferences. Simulation results provide key insights for the deployment of small cells in interference-limited dense scenarios.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. K-Means Cluster-Based Interference Alignment With Adam Optimizer in Convolutional Neural Networks;International Journal of Information Security and Privacy;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3