The Effect of Piezoelectric Fiber Rosette Configurations on Lamb Wave Direction Detection for Damage Localization

Author:

Jiang Shuai12ORCID,Shen Yiping1ORCID,Wang Songlai1ORCID,Peng Yanfeng1ORCID,Liu Yi3ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China

2. Hunan Railway Professional Technology College, Zhuzhou 412000, China

3. Zhuzhou National Innovation Railway Technology Co., Ltd., Zhuzhou 412000, China

Abstract

Piezoelectric fiber rosettes respond to the directivity characteristics of Lamb waves, and therefore, are useful in detecting the Lamb wave propagation direction. Considering material damage as a secondary wave source, two piezoelectric fiber rosettes are arranged to measure the scattered wave propagation directions for damage localization. The influences of various rosette configurations, i.e., 45°-rectangular, 135°-rectangular, 60°-delta, and 120°-delta, on the estimation accuracy of the propagation direction are investigated in this paper. The response of the piezoelectric fiber to the A 0 mode Lamb wave under narrowband tone-burst excitation is theoretically derived. Experimental tests and piezoelectric coupling simulations are performed to obtain the Lamb wave signal of each fiber. The matching pursuit (MP) algorithm is applied to extract the weak damage-related wave packet by using Hann-windowed narrowband excitation as an atom. The Lamb wave propagation directions are estimated based on the error function. The accuracies of the directions with 4 types of rosette configurations are compared, and their error sources are discussed. The results show that the accuracy of the 135°-rectangular configuration is relatively satisfactory, and the errors depend on the size and location of each fiber in the rosette. The proposed damage localization method is validated by experimental tests. The predicted locations are close to the actual damage location. The research results are significant for piezoelectric fiber rosette design and optimization and damage location without wave speed or time-of-flight information in complex or irregular structures.

Funder

Foundation of Hunan Educational Committee

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3