Multimodal Medical Image Fusion of Positron Emission Tomography and Magnetic Resonance Imaging Using Generative Adversarial Networks

Author:

Nandhini Abirami R.1ORCID,Durai Raj Vincent P. M.1ORCID,Srinivasan Kathiravan2ORCID,Manic K. Suresh3ORCID,Chang Chuan-Yu45ORCID

Affiliation:

1. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632 014 Tamil Nadu, India

3. Department of Electrical and Communication Engineering, National University of Science and Technology, Muscat, Oman

4. Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

5. Service Systems Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan

Abstract

Multimodal medical image fusion is a current technique applied in the applications related to medical field to combine images from the same modality or different modalities to improve the visual content of the image to perform further operations like image segmentation. Biomedical research and medical image analysis highly demand medical image fusion to perform higher level of medical analysis. Multimodal medical fusion assists medical practitioners to visualize the internal organs and tissues. Multimodal medical fusion of brain image helps to medical practitioners to simultaneously visualize hard portion like skull and soft portion like tissue. Brain tumor segmentation can be accurately performed by utilizing the image obtained after multimodal medical image fusion. The area of the tumor can be accurately located with the information obtained from both Positron Emission Tomography and Magnetic Resonance Image in a single fused image. This approach increases the accuracy in diagnosing the tumor and reduces the time consumed in diagnosing and locating the tumor. The functional information of the brain is available in the Positron Emission Tomography while the anatomy of the brain tissue is available in the Magnetic Resonance Image. Thus, the spatial characteristics and functional information can be obtained from a single image using a robust multimodal medical image fusion model. The proposed approach uses a generative adversarial network to fuse Positron Emission Tomography and Magnetic Resonance Image into a single image. The results obtained from the proposed approach can be used for further medical analysis to locate the tumor and plan for further surgical procedures. The performance of the GAN based model is evaluated using two metrics, namely, structural similarity index and mutual information. The proposed approach achieved a structural similarity index of 0.8551 and a mutual information of 2.8059.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3