A Novel Method for Parkinson’s Disease Diagnosis Utilizing Treatment Protocols

Author:

Al-Otaibi Shaha1ORCID,Ayouni Sarra1ORCID,Khan Md Maruf Haque2ORCID,Badr Malek34ORCID

Affiliation:

1. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh

3. The University of Mashreq, Research Center, Baghdad, Iraq

4. Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq

Abstract

It makes no difference whether a person is male or female when it comes to neurodegenerative disorders; both sexes are equally susceptible to their devastating effects. Sometimes, it is unclear why a person in their life got a condition that is well-known in the world, such as Parkinson’s disease. Other times, it is evident why the individual obtained the ailment (PD). In modern times, a variety of cutting-edge algorithms that are based on treatment protocols have been developed for the purpose of diagnosing Parkinson’s disease. The approach that is presented in this article is the most current one; it was created using deep learning, and it can predict how severely Parkinson’s disease would affect a patient. In order to diagnose this condition, it is necessary to conduct a comprehensive medical history, a history of any past treatments, physical exams, and certain blood tests and brain films. Because they are less time-consuming and costly, diagnoses are becoming an increasingly important part of medical practice. The diagnosis of Parkinson’s disease by the physician is supported by the findings of the present research, which analyzed the voices of 253 participants. Preprocessing is done in order to get the most accurate results possible from the data. In order to carry out the technique of balancing, a methodical sampling approach was used to choose the data that would afterwards be evaluated. Using a feature selection approach that was determined by the magnitude of the label’s influence, many data groups were created and organized. DT, SVM, and kNN are three methods that are used in classification algorithms and performance assessment criteria. The model was developed as a result of selecting the classification method and data group that had the greatest performance value. This decision led to the creation of the model. During the process of building the model, the SVM technique was used, and data comprising 45% of the original data set were utilized. The information was arranged in descending order of significance, beginning with the most pertinent. In addition to achieving exceptional outcomes in every other aspect of the project, the performance accuracy target was successfully met at 86 percent. As a consequence of this, it has been decided that the physician will be provided with medical decision support with the assistance of the data set obtained from the speech recordings of the individual who may have Parkinson’s disease and the model that has been developed. This has led to the conclusion that medical decision support will be offered to the physician.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference21 articles.

1. Parkinson’s disease in a Kurdish population;O. Mohammed;The Iraqi Postgraduate Medical Journal,2018

2. A review of Parkinson's disease

3. Diagnosis of Parkinson’s disease: progress and future prospects

4. The diagnosis and management of Parkinson’s disease;S. Esmail;Journal of Applied Sciences and Research,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3