An Advanced Otsu Method Integrated with Edge Detection and Decision Tree for Crack Detection in Highway Transportation Infrastructure

Author:

Han Haihang1,Deng Hanyu23,Dong Qiao2ORCID,Gu Xingyu2,Zhang Tianjie1ORCID,Wang Yangyang1

Affiliation:

1. Zhejiang Scientific Research Institute of Transport, Zhejiang Provincial Key Lab for Detection and Maintenance Technology of Road and Bridge, Hangzhou, Zhejiang 311305, China

2. School of Transportation, National Demonstration Center for Experimental Road and Traffic Engineering Education, Southeast University, Nanjing, Jiangsu 211189, China

3. Department of Civil and Environmental Engineering, University of California, Davis, Berkeley, CA 95616, USA

Abstract

The detection of various cracks on pavement surfaces has drawn more and more attention from pavement maintenance engineers. In the traditional pavement image segmentation, due to the small area of the pavement cracks, the gray level of crack pixels only accounts for a very small portion in the grayscale histogram, making it difficult to segment. This paper developed an improved Otsu method integrated with edge detection and a decision tree classifier for cracking identification in asphalt pavements. An image preprocessing approach including Gaussian function-based spatial filtering and top-hat transform is firstly proposed to reduce the influence of poor shading and lighting effects significantly. Four edge detection operators including Prewitt, Sobel, Gauss–Laplace (LoG), and Canny are evaluated. The Canny edge detection has demonstrated outstanding performance in crack detection; this algorithm helps to obtain more details of both cracks and noises. The Sobel and LoG operators show similar image segmentation and retain fewer noises. The decision tree classifier based on the ID3 algorithm can effectively classify different types of cracks including transverse, longitudinal, and block ones.

Funder

Zhejiang Provincial Department of Transport

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3