Insulator Leakage Current Prediction Using Hybrid of Particle Swarm Optimization and Gene Algorithm-Based Neural Network and Surface Spark Discharge Data

Author:

Nguyen Thanh Phuong12ORCID,Cho Ming-Yuan1

Affiliation:

1. Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

2. Department of Electronic and Electrical Engineering, Nha Trang University, Nha Trang, Khanh Hoa, Vietnam

Abstract

This study proposes a new superior hybrid algorithm, which is the particle swarm optimization (PSO) and gene algorithm (GA)-based neural network to predict the leakage current of insulators. The developed algorithm was utilized for the online monitoring systems, which were completely installed on the 69 kV and 161 kV transmission towers in Taiwan. This hybrid algorithm utilizes the local meteorological data as input parameters combined with the extracted enhanced data: the percentage of spark discharge areas and the brightness change in the image of the discharge phenomenon. These data with a high correlation with the leakage current are utilized as input vectors to improve the accuracy and effectiveness of the developed hybrid model. The performance of the developed algorithm is compared with a traditional PSO-based neural network and backpropagation neural network (BPNN) to evaluate and analyze. The comparative simulation results prove the effectiveness of the combination of hybrid PSO-GA-based neural network and surface discharge data, which achieved a maximum improvement of 38.54% MSE, 10.62% MAPE, and 3.41% R square for 161 kV data and 39.28% MSE, 12.62% MAPE, and 1.61% R square for 69 kV data. Moreover, the data with enhanced inputs outperform the traditional data in most benchmark factors, improving the accuracy and effectiveness in defining the deteriorative insulators. The developed methodology with a noticeable improvement was utilized in the online monitoring system to reduce the operational and maintenance cost of transmission lines in Taiwan Power Company.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3