Extracellular Vesicles Derived from Lung Cancer Cells Induce Transformation of Normal Fibroblasts into Lung Cancer-Associated Fibroblasts and Promote Metastasis of Lung Cancer by Delivering lncRNA HOTAIR

Author:

Zhang Xiaoxuan123,Zhang Yan12,Qiu Xin12,Cai Jing12,Yang Zhenzhou3ORCID,Song Fangzhou12ORCID

Affiliation:

1. Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China

2. Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China

3. Department of Cancer Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China

Abstract

Human lung cancer (LC) cells A549/H358, normal lung epithelial cells BEAS-2B, and lung normal fibroblasts (NFs) were cultured, followed by transfection of H358 cells with HOTAIR shRNA. Extracellular vesicles (EVs) extracted from H358 cells were identified. The internalization of Dil-labeled-EVs by NFs was tested, and protein levels of cancer-associated fibroblast (CAF) surface markers, inflammatory cytokines, cell proliferation, invasion, and migration, and lncRNA HOTAIR levels were determined. A549 cells were cultured in an H358-EVs-treated conditioned medium of NFs (NFCM), followed by intravenous injection of A549 cells into nude mice. The lesions and Ki-67-positive cells in lung tissues were measured. The results showed that tumor cell-derived EVs (T-EVs) motivated the transformation of NFs into CAFs. Specifically, EVs can be internalized by NFs, and the protein levels of CAF surface markers and inflammation levels were elevated in H358-EVs-treated NFs. The proliferation, invasion, and migration of A549 cells cultured in T-EVs-treated NFCM were increased. H358-EVs carried HOTAIR into NFs and promoted the transformation of NFs into CAFs. Inhibition of HOTAIR partially reversed the promoting effect of H358-EVs on the transformation of NFs into CAFs and invasion and migration of LC cells. T-EVs promoted metastasis of LC in vivo by transforming NFs into CAFs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3