Structurally Diverse Metal Coordination Compounds, Bearing Imidodiphosphinate and Diphosphinoamine Ligands, as Potential Inhibitors of the Platelet Activating Factor

Author:

Tsoupras Alexandros B.1,Roulia Maria2,Ferentinos Eleftherios2,Stamatopoulos Ioannis2,Demopoulos Constantinos A.1,Kyritsis Panayotis2

Affiliation:

1. Biochemistry Laboratory, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece

2. Inorganic Chemistry Laboratory, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece

Abstract

Metal complexes bearing dichalcogenated imidodiphosphinate[R2P(E)NP(E)R2]-ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar[Cu{(OPPh2)(OPPh2)N-O,O}2], tetrahedral[Zn{(EPPh2)(EPPh2)N-E,E}2], E = O, S, and octahedral[Ga{(OPPh2)(OPPh2)N-O,O}3], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar[Ni{(Ph2P)2N-S-CHMePh-P,P}X2], X = Cl, Br, the corresponding metal salts of all complexes and the(OPPh2)(OPPh2)NHligand were also investigated.Ga(O,O)3showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereasZn(S,S)2, with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition.Zn(O,O)2andCu(O,O)2inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkierGa(O,O)3being the most efficient and selective inhibitor.

Funder

University of Athens

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3