Resource Scheduling Based on Improved Spectral Clustering Algorithm in Edge Computing

Author:

Li Guangshun1ORCID,Xu Shuzhen1,Wu Junhua1ORCID,Ding Heng1

Affiliation:

1. School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China

Abstract

With the development of Internet of Things (IoT), the massive data generated by it forms big data, and the complexity of dealing with big data brings challenges to resource scheduling in edge computing. In order to solve the problem of resource scheduling and improve the satisfaction of users in edge computing environment, we propose a user-oriented improved spectral clustering scheduling algorithm (ISCM) in this paper. Based on the improved k-means algorithm, the ISCM algorithm solves the problem that the clustering result is sensitive to the initial value and realizes the reclustering, which makes the obtained clustering results more stable. Finally, the edge computing resource scheduling scheme is obtained based on the clustering results. The experimental results show that the resource scheduling scheme based on improved spectral clustering algorithm is superior to traditional spectral clustering algorithm in edge computing environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review on soft computing techniques in cloud load balancing network;International Journal of System Assurance Engineering and Management;2023-12-20

2. Artificial Intelligence and Machine Learning with IoT;Modern Approaches in IoT and Machine Learning for Cyber Security;2023-12-08

3. Unlocking the power of mist computing through clustering techniques in IoT networks;Internet of Things;2023-07

4. Model-based cloud service deployment optimisation method for minimisation of application service operational cost;Journal of Cloud Computing;2023-02-18

5. Optimal cross-layer resource allocation in fog computing: A market-based framework;Journal of Network and Computer Applications;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3