CCAAT/Enhancer-Binding Protein β Mediates Oxygen-Induced Retinal Neovascularization via Retinal Vascular Damage and Vascular Endothelial Growth Factor

Author:

Li Tingting1ORCID,Cai Xuan1,Wang Xiangning1ORCID,Zhang Xueyan1,Zhang Hui1,Xu Biwei1,Li Shiwei1,Hu Jianyan1ORCID,Wu Qiang1ORCID

Affiliation:

1. Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China

Abstract

Objective. To evaluate the role of CCAAT/enhancer-binding protein β (C/EBP β) in retinal neovascularization (RNV) in an oxygen-induced retinopathy (OIR) model. Methods. Rats with OIR were exposed to alternating hypoxic and hyperopic conditions for 14 days. Then, the rats with OIR were assigned randomly to groups that received intravitreal injections of either shRNA lentiviral particles targeting C/EBP β (LV.shC/EBP β) or control particles (LV.shScrambled). The effectiveness of transduction using intravitreal injection of C/EBP β shRNA was examined in rats with OIR. The retinal vascular damage and accumulation of RNV were determined by retinal fluorescein-dextran perfusion, retinal ADPase staining, and periodic acid-Schiff (PAS) staining. Retinal function was recorded by electroretinogram responses to full-field light flashes. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analyses were used to measure mRNA and protein levels of C/EBP β and vascular endothelial growth factor (VEGF). The expression of p-C/EBP β was also examined by western blot analyses. The location of C/EBP β expression in the retina was determined by immunohistochemistry. Results. In OIR rats, the expression levels of C/EBP β and VEGF were significantly increased at both the mRNA and protein levels (P<0.01). The p-C/EBP β expression was consistent with the level of C/EBP β. C/EBP β was predominantly localized to the ganglion cell layer (GCL) and the inner nuclear layer (INL). The retinal C/EBP β level was significantly reduced in tissues from rats with OIR transduced with LV.shC/EBP β compared with tissues from those transduced with LV.shScrambled (P<0.01). Compared with those of the rats with OIR in the LV.shScrambled group, nonperfused retinal areas, neovascular tufts, pericyte death, and the ratio of endothelial cells to pericytes in the LV.shC/EBP β group were significantly reduced. In OIR rats, retinal function was impaired. There was no significant change in retinal dysfunction between the LV.shC/EBP β group and the LV.shScrambled group. The levels of VEGF mRNA and protein in the LV.shC/EBP β group were also decreased significantly compared with those of the rats with OIR in the LV.shScrambled group (P<0.01). Conclusions. C/EBP β shRNA inhibits RNV in OIR. A potential mechanism may be that the activity of C/EBP β increases with its overexpression, which in turn aggravates the amount of the retinal vascular damage and promotes transcription of VEGF. C/EBP β might be a new therapeutic target for preventing RNV.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3