Towards Automatic Image Exposure Level Assessment

Author:

Zhang Lin1ORCID,Yang Xilin1ORCID,Zhang Lijun2ORCID,Liu Xiao2ORCID,Zhao Shengjie1ORCID,Ma Yong3ORCID

Affiliation:

1. School of Software Engineering, Tongji University, Shanghai, China

2. College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst 01003, MA, USA

3. School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China

Abstract

The quality of acquired images can be surely reduced by improper exposures. Thus, in many vision-related industries, such as imaging sensor manufacturing and video surveillance, an approach that can routinely and accurately evaluate exposure levels of images is in urgent need. Taking an image as input, such a method is expected to output a scalar value, which can represent the overall perceptual exposure level of the examined image, ranging from extremely underexposed to extremely overexposed. However, studies focusing on image exposure level assessment (IELA) are quite sporadic. It should be noted that blind NR-IQA (no-reference image quality assessment) algorithms or metrics used to measure the quality of contrast-distorted images cannot be used for IELA. The root reason is that though these algorithms can quantify quality distortion of images, they do not know whether the distortion is due to underexposure or overexposure. This paper aims to resolve the issue of IELA to some extent and contributes to two aspects. Firstly, an Image Exposure Database (IEpsD) is constructed to facilitate the study of IELA. IEpsD comprises 24,500 images with various exposure levels, and for each image a subjective exposure score is provided, which represents its perceptual exposure level. Secondly, as IELA can be naturally formulated as a regression problem, we thoroughly evaluate the performance of modern deep CNN architectures for solving this specific task. Our evaluation results can serve as a baseline when the other researchers develop even more sophisticated IELA approaches. To facilitate the other researchers to reproduce our results, we have released the dataset and the relevant source code at https://cslinzhang.github.io/imgExpo/.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid in-flight image quality check for UAV-enabled bridge inspection;ISPRS Journal of Photogrammetry and Remote Sensing;2024-06

2. Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement;IEEE Transactions on Intelligent Transportation Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3