An Accurate Method for Real-Time Aircraft Dynamics Simulation Based on Predictor-Corrector Scheme

Author:

Zhao Jiaxin12ORCID,Wang Hongwei3,Zhang Heming1

Affiliation:

1. National CIMS Engineering Research Centre, Tsinghua University, Beijing 100084, China

2. State Key Laboratory of Civil Aircraft Flight Simulation, Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

3. School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

Abstract

Real-time aircraft dynamics simulation requires very high accuracy and stability in the numerical integration process. Nonetheless, traditional multistep numerical methods cannot effectively meet the new requirements. Therefore, a novel real-time multistep method based on Predict-Evaluate-Correct scheme of three-step fourth-order method (RTPEC-34) is proposed and developed in this research to address the gap. In addition to the development of a highly accurate algorithm based on predictor-corrector, the contribution of this work also includes the analysis of truncation error for real-time problems. Moreover, the parameters for the RTPEC-34 method are optimized using intelligent optimization algorithms. The application and comparison of the optimization algorithms also lead to general guidelines for their applications in the development of improved multistep methods. Last but not least, theoretical analysis is also conducted on the stability of the proposed RTPEC-34 method, which is corroborated in simulation experiments and thus provides general guidelines for the evaluation of real-time numerical methods. The RTPEC-34 method is compared with other multistep algorithms using both numerical experiments and a real engineering example. As shown in the comparison, it achieves improved performance in terms of accuracy and stability and it is also a viable and efficient algorithm for real-time aircraft dynamics simulation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3