DNAPred_Prot: Identification of DNA-Binding Proteins Using Composition- and Position-Based Features

Author:

Barukab Omar1,Khan Yaser Daanial2,Khan Sher Afzal3ORCID,Chou Kuo-Chen4

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, P. O. Box 344, Rabigh, 21911 Jeddah, Saudi Arabia

2. Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Pakistan

3. Department of Computer Sciences, Abdul Wali Khan University Mardan, Pakistan

4. Gordon Life Science Institute, Boston, MA 02478, USA

Abstract

In the domain of genome annotation, the identification of DNA-binding protein is one of the crucial challenges. DNA is considered a blueprint for the cell. It contained all necessary information for building and maintaining the trait of an organism. It is DNA, which makes a living thing, a living thing. Protein interaction with DNA performs an essential role in regulating DNA functions such as DNA repair, transcription, and regulation. Identification of these proteins is a crucial task for understanding the regulation of genes. Several methods have been developed to identify the binding sites of DNA and protein depending upon the structures and sequences, but they were costly and time-consuming. Therefore, we propose a methodology named “DNAPred_Prot”, which uses various position and frequency-dependent features from protein sequences for efficient and effective prediction of DNA-binding proteins. Using testing techniques like 10-fold cross-validation and jackknife testing an accuracy of 94.95% and 95.11% was yielded, respectively. The results of SVM and ANN were also compared with those of a random forest classifier. The robustness of the proposed model was evaluated by using the independent dataset PDB186, and an accuracy of 91.47% was achieved by it. From these results, it can be predicted that the suggested methodology performs better than other extant methods for the identification of DNA-binding proteins.

Funder

Deanship of Scientific Research (DSR) at King Abdulaziz University

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3