Conduction Mechanism by Using CBH Model in Fe3+ and Mn3+ Ion Modified Pb(Zr0.65−xAxTi0.35)O3 (A = Mn3+/Fe3+) Ceramics

Author:

Sahu Niranjan1,Panigrahi S.2,Kar Manoranjan3

Affiliation:

1. Department of Physics, Purushottam Institute of Engineering and Technology, Rourkela, Odisha 770034, India

2. Department of Physics, National Institute of Technology, Rourkela, Odisha 769008, India

3. Department of Physics, Indian Institute of Technology, Patna, Bihar, 800013, India

Abstract

Polycrystalline samples of manganese and iron substituted lead zirconium titanate (PZT) with general formula Pb(Zr0.65−xAxTi0.35)O3 (A = Mn3+ and Fe3+) ceramics have been synthesized by high temperature solid state reaction technique. X-ray diffraction (XRD) patterns were recorded at room temperature to study the crystal structure. All the patterns could be refined by employing the Rietveld method to R3c space group with rhombohedral symmetry. Microstructural properties of the materials were analyzed by scanning electron microscope (SEM), and compositional analysis was carried out by energy dispersive spectrum (EDS) measurements. All the materials exhibit ferroelectric to paraelectric transition. The variation of dielectric constant and loss tangent with temperature and frequency is investigated. The decrease of activation energy and increases of AC conductivity with the Fe3+ or Mn3+ ion concentration have been observed. The AC conductivity has been analyzed by the power law. The frequency exponent with the function of temperature has been analyzed by assuming that the AC conduction mechanism is the correlated barrier hopping (CBH) model. The conduction in the present sample is found to be of bipolaron type for Mn3+ ion-doped sample. However, the conduction mechanism could not be explained by CBH model for Fe3+ ion-doped sample.

Publisher

Hindawi Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3