Sea Urchin-Like MnO2/Biomass Carbon Composite Electrode Material for High-Performance Supercapacitors

Author:

Zhao Xiaoyu1,Wang Ning2,Li Lei2,Fang Zixun2,Tang Shoufeng2ORCID,Gu Jianmin2ORCID

Affiliation:

1. Department of Food and Pharmaceutical Engineering, Suihua University, Suihua 152000, China

2. State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China

Abstract

Manganese oxide materials for high-performance supercapacitors are as popular electrode materials of energy storage devices based on their high theoretical capacitance. However, its development is limited by its poor electrical conductivity and insufficient contact surface area, which causes the supercapacitor to fail to achieve its theoretical specific capacitance. In this paper, unique sea urchin-like MnO2/biomass carbon (BC) composite materials were prepared for supercapacitors, showing the lower resistance compared with pure MnO2, which possesses superior electrochemical performance due to the advances in outstanding electrical conductivity. The single electrode test results show that the composite material achieves a specific capacitance of 205.5 F·g−1 at the current density of 0.5 A·g−1; with the current density increasing by a factor of 20, the supercapacitor loaded with this composite still retained 63.2% of its initial capacitance, showing its high rate performance. Meanwhile, the constructed asymmetric supercapacitor can change the color of electrochromic devices and drive the light of electrochemiluminescent devices, indicating its promising application. This work provided a promising route for the rational construction of multiple dimensioned high-performance electrode materials for use in new energy storage devices.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3