A Combination of Coconut Fiber Suture and Tamarind Seed Gel with Dehydrated Human Amnion Membrane for Wound Surgery in Rats

Author:

Pothireddy Raghu Babu1ORCID,Julius Angeline2,Mathai Manu Thomas1,Lakshmanan Ganesh3,Hailemariam Beimnet Asfaw4ORCID

Affiliation:

1. Department of Zoology, Madras Christian College, Affiliated to University of Madras, Chennai 600059, Tamil Nadu, India

2. Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India

3. Department of Anatomy, Asan Memorial Dental College and Hospital, Chennai 603105, Tamil Nadu, India

4. Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia

Abstract

Today, there are over 2,000 different biomaterials used for various medical applications, but none of these biomaterials are 100% compatible with all human beings. Coconut fiber is widely available but has not been tested as a safe natural alternative for sutures. Immature coconut fiber is nonabsorbable and is effective for cuts and open wounds when used in combination with dehydrated human amnion membrane (dHAM). Immature coconut fiber, tamarind seed polysaccharide (TSP), and dHAM were prepared to test their combinational effect on wound healing in rats. TSP enhanced cell viability, proliferation, and migration in human skin cells and cured wounds both individually and in combination with dHAM. An antibiotic-free combination of the human amniotic membrane with intact epithelium, tamarind seed polysaccharide, and immature coconut fiber provided faster wound healing. Significantly higher wound healing was seen on the 11th day based on an initial 10 mm biopsy punch surgery in Wistar rats compared to control groups. Histological studies revealed thickened dermis edges with more neutrophil infiltration. Collagen deposition in the dermis was homogeneous across the excised skin tissue in the test group, again attesting to the utility of this procedure. This research signifies the use of TSP gel together with the amnion membrane representing a “smart patch” with wound healing potential, which would encourage further research on the smart patch made using a combination of plant and animal biological materials.

Funder

University of Madras

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomedical applications of bio-degradable green composites;Green Sustainable Process for Chemical and Environmental Engineering and Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3